Copied to
clipboard

?

G = C42.118D10order 320 = 26·5

118th non-split extension by C42 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.118D10, C10.232+ (1+4), C10.632- (1+4), (C4×D4)⋊26D5, (D4×C20)⋊28C2, C4⋊C4.288D10, D10⋊Q89C2, (C2×D4).225D10, C422D511C2, C20.6Q826C2, (C22×C4).49D10, C20.48D413C2, (C4×C20).220C22, (C2×C20).166C23, (C2×C10).108C24, C22⋊C4.120D10, Dic5.Q88C2, Dic5⋊D4.4C2, C22.7(C4○D20), C22.D207C2, C4⋊Dic5.41C22, D10.12D410C2, C2.25(D46D10), (D4×C10).309C22, C23.D1010C2, C23.23D105C2, (C2×Dic5).48C23, C10.D4.8C22, (C22×D5).42C23, C23.105(C22×D5), C22.133(C23×D5), Dic5.14D410C2, C23.D5.17C22, D10⋊C4.67C22, C23.18D1019C2, (C22×C20).366C22, (C22×C10).178C23, C52(C22.33C24), (C2×Dic10).31C22, (C4×Dic5).227C22, C2.20(D4.10D10), (C22×Dic5).100C22, (C4×C5⋊D4)⋊47C2, C2.57(C2×C4○D20), C10.50(C2×C4○D4), (C2×C4×D5).255C22, (C2×C10).18(C4○D4), (C2×C10.D4)⋊39C2, (C5×C4⋊C4).336C22, (C2×C4).164(C22×D5), (C2×C5⋊D4).125C22, (C5×C22⋊C4).107C22, SmallGroup(320,1236)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.118D10
C1C5C10C2×C10C22×D5C2×C5⋊D4C4×C5⋊D4 — C42.118D10
C5C2×C10 — C42.118D10

Subgroups: 718 in 218 conjugacy classes, 95 normal (91 characteristic)
C1, C2 [×3], C2 [×4], C4 [×12], C22, C22 [×2], C22 [×8], C5, C2×C4 [×5], C2×C4 [×13], D4 [×5], Q8, C23 [×2], C23, D5, C10 [×3], C10 [×3], C42, C42, C22⋊C4 [×2], C22⋊C4 [×8], C4⋊C4, C4⋊C4 [×13], C22×C4 [×2], C22×C4 [×3], C2×D4, C2×D4 [×2], C2×Q8, Dic5 [×7], C20 [×5], D10 [×3], C2×C10, C2×C10 [×2], C2×C10 [×5], C2×C4⋊C4, C4×D4, C4×D4, C4⋊D4, C22⋊Q8 [×3], C22.D4 [×4], C42.C2 [×2], C422C2 [×2], Dic10, C4×D5, C2×Dic5 [×7], C2×Dic5 [×3], C5⋊D4 [×3], C2×C20 [×5], C2×C20 [×2], C5×D4 [×2], C22×D5, C22×C10 [×2], C22.33C24, C4×Dic5, C10.D4 [×10], C4⋊Dic5 [×3], D10⋊C4 [×4], C23.D5 [×4], C4×C20, C5×C22⋊C4 [×2], C5×C4⋊C4, C2×Dic10, C2×C4×D5, C22×Dic5 [×2], C2×C5⋊D4 [×2], C22×C20 [×2], D4×C10, C20.6Q8, C422D5, Dic5.14D4, C23.D10, D10.12D4, C22.D20, Dic5.Q8, D10⋊Q8, C2×C10.D4, C20.48D4, C4×C5⋊D4, C23.23D10, C23.18D10, Dic5⋊D4, D4×C20, C42.118D10

Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D5, C4○D4 [×2], C24, D10 [×7], C2×C4○D4, 2+ (1+4), 2- (1+4), C22×D5 [×7], C22.33C24, C4○D20 [×2], C23×D5, C2×C4○D20, D46D10, D4.10D10, C42.118D10

Generators and relations
 G = < a,b,c,d | a4=b4=c10=1, d2=a2, ab=ba, cac-1=a-1, dad-1=a-1b2, cbc-1=a2b, dbd-1=b-1, dcd-1=a2c-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 138 123 21)(2 22 124 139)(3 140 125 23)(4 24 126 131)(5 132 127 25)(6 26 128 133)(7 134 129 27)(8 28 130 135)(9 136 121 29)(10 30 122 137)(11 80 81 119)(12 120 82 71)(13 72 83 111)(14 112 84 73)(15 74 85 113)(16 114 86 75)(17 76 87 115)(18 116 88 77)(19 78 89 117)(20 118 90 79)(31 153 148 46)(32 47 149 154)(33 155 150 48)(34 49 141 156)(35 157 142 50)(36 41 143 158)(37 159 144 42)(38 43 145 160)(39 151 146 44)(40 45 147 152)(51 66 100 105)(52 106 91 67)(53 68 92 107)(54 108 93 69)(55 70 94 109)(56 110 95 61)(57 62 96 101)(58 102 97 63)(59 64 98 103)(60 104 99 65)
(1 86 60 46)(2 17 51 154)(3 88 52 48)(4 19 53 156)(5 90 54 50)(6 11 55 158)(7 82 56 42)(8 13 57 160)(9 84 58 44)(10 15 59 152)(12 95 159 129)(14 97 151 121)(16 99 153 123)(18 91 155 125)(20 93 157 127)(21 114 65 148)(22 76 66 32)(23 116 67 150)(24 78 68 34)(25 118 69 142)(26 80 70 36)(27 120 61 144)(28 72 62 38)(29 112 63 146)(30 74 64 40)(31 138 75 104)(33 140 77 106)(35 132 79 108)(37 134 71 110)(39 136 73 102)(41 128 81 94)(43 130 83 96)(45 122 85 98)(47 124 87 100)(49 126 89 92)(101 145 135 111)(103 147 137 113)(105 149 139 115)(107 141 131 117)(109 143 133 119)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 10 123 122)(2 121 124 9)(3 8 125 130)(4 129 126 7)(5 6 127 128)(11 157 81 50)(12 49 82 156)(13 155 83 48)(14 47 84 154)(15 153 85 46)(16 45 86 152)(17 151 87 44)(18 43 88 160)(19 159 89 42)(20 41 90 158)(21 64 138 103)(22 102 139 63)(23 62 140 101)(24 110 131 61)(25 70 132 109)(26 108 133 69)(27 68 134 107)(28 106 135 67)(29 66 136 105)(30 104 137 65)(31 147 148 40)(32 39 149 146)(33 145 150 38)(34 37 141 144)(35 143 142 36)(51 97 100 58)(52 57 91 96)(53 95 92 56)(54 55 93 94)(59 99 98 60)(71 117 120 78)(72 77 111 116)(73 115 112 76)(74 75 113 114)(79 119 118 80)

G:=sub<Sym(160)| (1,138,123,21)(2,22,124,139)(3,140,125,23)(4,24,126,131)(5,132,127,25)(6,26,128,133)(7,134,129,27)(8,28,130,135)(9,136,121,29)(10,30,122,137)(11,80,81,119)(12,120,82,71)(13,72,83,111)(14,112,84,73)(15,74,85,113)(16,114,86,75)(17,76,87,115)(18,116,88,77)(19,78,89,117)(20,118,90,79)(31,153,148,46)(32,47,149,154)(33,155,150,48)(34,49,141,156)(35,157,142,50)(36,41,143,158)(37,159,144,42)(38,43,145,160)(39,151,146,44)(40,45,147,152)(51,66,100,105)(52,106,91,67)(53,68,92,107)(54,108,93,69)(55,70,94,109)(56,110,95,61)(57,62,96,101)(58,102,97,63)(59,64,98,103)(60,104,99,65), (1,86,60,46)(2,17,51,154)(3,88,52,48)(4,19,53,156)(5,90,54,50)(6,11,55,158)(7,82,56,42)(8,13,57,160)(9,84,58,44)(10,15,59,152)(12,95,159,129)(14,97,151,121)(16,99,153,123)(18,91,155,125)(20,93,157,127)(21,114,65,148)(22,76,66,32)(23,116,67,150)(24,78,68,34)(25,118,69,142)(26,80,70,36)(27,120,61,144)(28,72,62,38)(29,112,63,146)(30,74,64,40)(31,138,75,104)(33,140,77,106)(35,132,79,108)(37,134,71,110)(39,136,73,102)(41,128,81,94)(43,130,83,96)(45,122,85,98)(47,124,87,100)(49,126,89,92)(101,145,135,111)(103,147,137,113)(105,149,139,115)(107,141,131,117)(109,143,133,119), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,10,123,122)(2,121,124,9)(3,8,125,130)(4,129,126,7)(5,6,127,128)(11,157,81,50)(12,49,82,156)(13,155,83,48)(14,47,84,154)(15,153,85,46)(16,45,86,152)(17,151,87,44)(18,43,88,160)(19,159,89,42)(20,41,90,158)(21,64,138,103)(22,102,139,63)(23,62,140,101)(24,110,131,61)(25,70,132,109)(26,108,133,69)(27,68,134,107)(28,106,135,67)(29,66,136,105)(30,104,137,65)(31,147,148,40)(32,39,149,146)(33,145,150,38)(34,37,141,144)(35,143,142,36)(51,97,100,58)(52,57,91,96)(53,95,92,56)(54,55,93,94)(59,99,98,60)(71,117,120,78)(72,77,111,116)(73,115,112,76)(74,75,113,114)(79,119,118,80)>;

G:=Group( (1,138,123,21)(2,22,124,139)(3,140,125,23)(4,24,126,131)(5,132,127,25)(6,26,128,133)(7,134,129,27)(8,28,130,135)(9,136,121,29)(10,30,122,137)(11,80,81,119)(12,120,82,71)(13,72,83,111)(14,112,84,73)(15,74,85,113)(16,114,86,75)(17,76,87,115)(18,116,88,77)(19,78,89,117)(20,118,90,79)(31,153,148,46)(32,47,149,154)(33,155,150,48)(34,49,141,156)(35,157,142,50)(36,41,143,158)(37,159,144,42)(38,43,145,160)(39,151,146,44)(40,45,147,152)(51,66,100,105)(52,106,91,67)(53,68,92,107)(54,108,93,69)(55,70,94,109)(56,110,95,61)(57,62,96,101)(58,102,97,63)(59,64,98,103)(60,104,99,65), (1,86,60,46)(2,17,51,154)(3,88,52,48)(4,19,53,156)(5,90,54,50)(6,11,55,158)(7,82,56,42)(8,13,57,160)(9,84,58,44)(10,15,59,152)(12,95,159,129)(14,97,151,121)(16,99,153,123)(18,91,155,125)(20,93,157,127)(21,114,65,148)(22,76,66,32)(23,116,67,150)(24,78,68,34)(25,118,69,142)(26,80,70,36)(27,120,61,144)(28,72,62,38)(29,112,63,146)(30,74,64,40)(31,138,75,104)(33,140,77,106)(35,132,79,108)(37,134,71,110)(39,136,73,102)(41,128,81,94)(43,130,83,96)(45,122,85,98)(47,124,87,100)(49,126,89,92)(101,145,135,111)(103,147,137,113)(105,149,139,115)(107,141,131,117)(109,143,133,119), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,10,123,122)(2,121,124,9)(3,8,125,130)(4,129,126,7)(5,6,127,128)(11,157,81,50)(12,49,82,156)(13,155,83,48)(14,47,84,154)(15,153,85,46)(16,45,86,152)(17,151,87,44)(18,43,88,160)(19,159,89,42)(20,41,90,158)(21,64,138,103)(22,102,139,63)(23,62,140,101)(24,110,131,61)(25,70,132,109)(26,108,133,69)(27,68,134,107)(28,106,135,67)(29,66,136,105)(30,104,137,65)(31,147,148,40)(32,39,149,146)(33,145,150,38)(34,37,141,144)(35,143,142,36)(51,97,100,58)(52,57,91,96)(53,95,92,56)(54,55,93,94)(59,99,98,60)(71,117,120,78)(72,77,111,116)(73,115,112,76)(74,75,113,114)(79,119,118,80) );

G=PermutationGroup([(1,138,123,21),(2,22,124,139),(3,140,125,23),(4,24,126,131),(5,132,127,25),(6,26,128,133),(7,134,129,27),(8,28,130,135),(9,136,121,29),(10,30,122,137),(11,80,81,119),(12,120,82,71),(13,72,83,111),(14,112,84,73),(15,74,85,113),(16,114,86,75),(17,76,87,115),(18,116,88,77),(19,78,89,117),(20,118,90,79),(31,153,148,46),(32,47,149,154),(33,155,150,48),(34,49,141,156),(35,157,142,50),(36,41,143,158),(37,159,144,42),(38,43,145,160),(39,151,146,44),(40,45,147,152),(51,66,100,105),(52,106,91,67),(53,68,92,107),(54,108,93,69),(55,70,94,109),(56,110,95,61),(57,62,96,101),(58,102,97,63),(59,64,98,103),(60,104,99,65)], [(1,86,60,46),(2,17,51,154),(3,88,52,48),(4,19,53,156),(5,90,54,50),(6,11,55,158),(7,82,56,42),(8,13,57,160),(9,84,58,44),(10,15,59,152),(12,95,159,129),(14,97,151,121),(16,99,153,123),(18,91,155,125),(20,93,157,127),(21,114,65,148),(22,76,66,32),(23,116,67,150),(24,78,68,34),(25,118,69,142),(26,80,70,36),(27,120,61,144),(28,72,62,38),(29,112,63,146),(30,74,64,40),(31,138,75,104),(33,140,77,106),(35,132,79,108),(37,134,71,110),(39,136,73,102),(41,128,81,94),(43,130,83,96),(45,122,85,98),(47,124,87,100),(49,126,89,92),(101,145,135,111),(103,147,137,113),(105,149,139,115),(107,141,131,117),(109,143,133,119)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,10,123,122),(2,121,124,9),(3,8,125,130),(4,129,126,7),(5,6,127,128),(11,157,81,50),(12,49,82,156),(13,155,83,48),(14,47,84,154),(15,153,85,46),(16,45,86,152),(17,151,87,44),(18,43,88,160),(19,159,89,42),(20,41,90,158),(21,64,138,103),(22,102,139,63),(23,62,140,101),(24,110,131,61),(25,70,132,109),(26,108,133,69),(27,68,134,107),(28,106,135,67),(29,66,136,105),(30,104,137,65),(31,147,148,40),(32,39,149,146),(33,145,150,38),(34,37,141,144),(35,143,142,36),(51,97,100,58),(52,57,91,96),(53,95,92,56),(54,55,93,94),(59,99,98,60),(71,117,120,78),(72,77,111,116),(73,115,112,76),(74,75,113,114),(79,119,118,80)])

Matrix representation G ⊆ GL6(𝔽41)

010000
100000
0040161833
001734033
000251825
0024302831
,
0320000
3200000
00203713
0028301528
001515110
002033439
,
100000
010000
001126284
001515370
00260815
003026167
,
100000
0400000
0024161317
00193444
001825337
0014302532

G:=sub<GL(6,GF(41))| [0,1,0,0,0,0,1,0,0,0,0,0,0,0,40,17,0,24,0,0,16,34,25,30,0,0,18,0,18,28,0,0,33,33,25,31],[0,32,0,0,0,0,32,0,0,0,0,0,0,0,2,28,15,20,0,0,0,30,15,33,0,0,37,15,11,4,0,0,13,28,0,39],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,11,15,26,30,0,0,26,15,0,26,0,0,28,37,8,16,0,0,4,0,15,7],[1,0,0,0,0,0,0,40,0,0,0,0,0,0,24,19,18,14,0,0,16,34,25,30,0,0,13,4,33,25,0,0,17,4,7,32] >;

62 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H···4N5A5B10A···10F10G···10N20A···20H20I···20X
order1222222244444444···45510···1010···1020···2020···20
size111122420222244420···20222···24···42···24···4

62 irreducible representations

dim1111111111111111222222224444
type+++++++++++++++++++++++--
imageC1C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2D5C4○D4D10D10D10D10D10C4○D202+ (1+4)2- (1+4)D46D10D4.10D10
kernelC42.118D10C20.6Q8C422D5Dic5.14D4C23.D10D10.12D4C22.D20Dic5.Q8D10⋊Q8C2×C10.D4C20.48D4C4×C5⋊D4C23.23D10C23.18D10Dic5⋊D4D4×C20C4×D4C2×C10C42C22⋊C4C4⋊C4C22×C4C2×D4C22C10C10C2C2
# reps11111111111111112424242161144

In GAP, Magma, Sage, TeX

C_4^2._{118}D_{10}
% in TeX

G:=Group("C4^2.118D10");
// GroupNames label

G:=SmallGroup(320,1236);
// by ID

G=gap.SmallGroup(320,1236);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,477,100,675,570,297,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^10=1,d^2=a^2,a*b=b*a,c*a*c^-1=a^-1,d*a*d^-1=a^-1*b^2,c*b*c^-1=a^2*b,d*b*d^-1=b^-1,d*c*d^-1=a^2*c^-1>;
// generators/relations

׿
×
𝔽